The Benefits of Restoration in Urbanizing Watersheds: **Developing Value Indicators and Understanding Social Barriers and Opportunities**

Marisa Mazzotta^{1*}, Kristen Hychka^{2,3}, Justin Bousquin², Caroline Druschke^{2,3}, Walter Berry¹, and Claudette Ojo²

¹ U.S. EPA Office of Research and Development, Atlantic Ecology Division, Narragansett, RI, USA

² ORISE participant, U.S. EPA Office of Research and Development, Atlantic Ecology Division, Narragansett, RI, USA, ³ University of Rhode Island, Kingston, RI, USA

BACKGROUND:

- Existing tools to compare restoration sites focus on biophysical attributes, and may be too evaluate wetland complicated for local managers.
- Our value indicators can help managers to services and benefits.

Inform restoration decisions and implementation

- Limited information exists about barriers and opportunities in restoration efforts.

- Even the best projects sometimes fail if the public is not effectively engaged in the decision process.

Develop Ecosystem Benefits Indicators

Objective:

• Develop a systematic approach to compiling a set of benefit indicators that is grounded in economic theory and uses readily-available data.

Indicator development process; flood reduction example:

1. Functional assessment

Where is flooding reduced?

- With existing wetlands, 7.4km² (7.5%) of the modeled** area floods [
- Without existing wetlands 7.7 km² of the area would flood [indicates additional flood areas]

2. Assessment of complements

- Is existing infrastructure at risk?
- 127 houses [🚹] in flooded area

3. Assessment of beneficiaries

- How many houses are protected from flooding by existing wetlands?

Understand Opportunities and Barriers **Objectives**:

- Identify public opportunities for and barriers to urban restoration
- Develop a framework for deliberate design of public engagement, based on desired ecological, stakeholder, and learning outcomes.

Data Collection Conducted face-to-face interviews with 27 local state, & federal managers

Synthesis **Reviewed interview** transcripts to identify common arguments, themes, & patterns

Outputs ncluded ecosystem benefits and disservices identified by managers in the indicators approach

Developed recommendations for managers who engage in public participation efforts

Data Collection

The most common terms from interviews with 27 local, state, and regional land managers when discussing urban restoration issues.

4. Assessment of demand and preferences

- How are significant floods (> 1ft) affected by wetlands?
- 19 houses [1] have flood depth reduced to <1ft

5. Assessment of substitutes

- How many houses benefit from existing gray infrastructure substitutes?
 - Wetlands [*****] <0.5km upstream from a dam [] will typically not provide additional flood protection to houses below the dam. A dam will typically not substitute flood protection for wetlands [**K**] >0.5 km upstream.

6. Assessment of scarcity

Supply - What areas have greater volume of wetlands? vs. Demand - What areas would benefit 0 - 50,000 most from restoration? 50,000 - 125,000 125,000 - 250,000

Volume (m³) of wetlands in sub-basin

7. Assessment of temporal reliability

250,000 - 500,000 500,000 - 750,000

How sure are we that flood reduction benefits will continue?

**Model was based on rainfall and flow matching the second largest storm on record (October 2005; record dates back 75 years to 1941).

Synthesis

Opportunities:

- Close-knit network of managers
- Shared history of successful restoration projects

Challenges:

- Competing versions of restoration targets
- Limited and sporadic funding for construction, monitoring, and adaptive management

Public interaction:

- Perceived lack of public knowledge about hydrology and restoration
- Perceived lack of public value for restoration or non-human benefits of projects
- Frustrating and contentious public meetings

Outputs

Ecosystem Benefits Indicators:

- We are producing a step-by step guidebook to applying this approach.
- It will include indicator checklists, spreadsheet and mapping tools, and suggestions for data sources. **Opportunities and barriers:**
- From the interviews, we developed a list of benefits and disservices from ecological restoration.
- We summarized opportunities/barriers to urban restoration.
- We developed a framework for public engagement. **Overall:**
- We are applying marketing methods to help develop and promote methods that managers can use.

Takeaways

Indicators:

 This approach allows users to evaluate and compare benefits of restoration without estimating dollar values, using readily available data.

Opportunities and barriers:

- Understanding communication styles in public participation helps managers more successfully implement projects. **Overall**:
- Considering the human element when developing and evaluating restoration efforts is critical for improved decisionmaking and successful implementation.